Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.937
Filtrar
1.
Mol Pharm ; 21(4): 1919-1932, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557163

RESUMO

HER2 status determination is a necessary step for the proper choice of therapy and selection of patients for the targeted treatment of cancer. Targeted radiotracers such as radiolabeled DARPins provide a noninvasive and effective way for the molecular imaging of HER2 expression. This study aimed to evaluate tumor-targeting properties of three 99mTc-labeled DARPin G3 variants containing Gly-Gly-Gly-Cys (G3C), (Gly-Gly-Gly-Ser)3-Cys ((G3S)3C), or Glu-Glu-Glu-Cys (E3C) amino acid linkers at the C-terminus and conjugated to the HYNIC chelating agent, as well as to compare them with the clinically evaluated DARPin G3 labeled with 99mTc(CO)3 using the (HE)3-tag at the N-terminus. The labeling of DARPin G3-HYNIC variants provided radiochemical yields in the range of 50-80%. Labeled variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 0.5-3 nM. There was no substantial influence of the linker and HYNIC chelator on the binding of 99mTc-labeled DARPin G3 variants to HER2 in vitro; however, [99mTc]Tc-G3-(G3S)3C-HYNIC had the highest affinity. Comparative biodistribution of [99mTc]Tc-G3-G3C-HYNIC, [99mTc]Tc-G3-(G3S)3C-HYNIC, [99mTc]Tc-G3-E3C-HYNIC, and [99mTc]Tc-(HE)3-G3 in healthy CD1 mice showed that there was a strong influence of the linkers on uptake in normal tissues. [99mTc]Tc-G3-E3C-HYNIC had an increased retention of activity in the liver and the majority of other organs compared to the other conjugates. The tumor uptake of [99mTc]Tc-G3-(G3S)3C-HYNIC and [99mTc]Tc-(HE)3-G3 in Nu/j mice bearing SKOV-3 xenografts was similar. The specificity of tumor targeting in vivo was demonstrated for both tracers. [99mTc]Tc-G3-(G3S)3C-HYNIC provided comparable, although slightly lower tumor-to-lung, tumor-to spleen and tumor-to-liver ratios than [99mTc]Tc-(HE)3-G3. Radiolabeling of DARPin G3-HYNIC conjugates with 99mTc provided the advantage of a single-step radiolabeling procedure; however, the studied HYNIC conjugates did not improve imaging contrast compared to the 99mTc-tricarbonyl-labeled DARPin G3. At this stage, [99mTc]Tc-(HE)3-G3 remains the most promising candidate for the clinical imaging of HER2-overexpressing cancers.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Distribuição Tecidual , Receptor ErbB-2/genética
2.
Bioconjug Chem ; 35(3): 381-388, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446033

RESUMO

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is overexpressed in human triple-negative breast cancer (TNBC) and promotes cell migration and proliferation. TNBC is limited in treatment options relative to hormone-receptor-positive breast cancer and is commonly treated with chemotherapy, which is often compromised by acquired resistance. DANCR has been implicated in the development of chemoresistance across multiple cancer types. Here, we applied magnetic resonance molecular imaging (MRMI) with a targeted contrast agent, MT218, specific to extradomain-B fibronectin (EDB-FN), a marker for epithelial-to-mesenchymal transition, to assess the therapeutic efficacy of the combination of paclitaxel and ZD2-PEG-ECO/siDANCR nanoparticles (ZD2-siDANCR-ELNP) to treat TNBC. The treatment of orthotopic MDA-MB-231 TNBC in mice with paclitaxel significantly suppressed tumor growth but with a significant increase of EDB-FN in the tumor, as revealed by MRMI and immunohistochemistry. Combining ZD2-siDANCR-ELNP with paclitaxel further reduced tumor sizes, along with reduced EDB-FN expression. Interestingly, MT218-MRMI revealed a lower reduction of tumor signal enhancement with the combination treatment than that with the siDANCR treatment alone, which was supported by higher cell density in the tumors treated with the combination therapy, as shown by histochemical analysis. MT218-MRMI clearly revealed the changes of the tumor microenvironment in response to various therapies and is effective to noninvasively assess the response of TNBC tumors to the therapies. Regulating oncogenic lncRNA DANCR is an effective strategy for improving the outcomes of chemotherapy in TNBC.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , RNA Longo não Codificante/genética , Interferência de RNA , Linhagem Celular Tumoral , Paclitaxel/uso terapêutico , Espectroscopia de Ressonância Magnética , Imagem Molecular/métodos , Proliferação de Células , Microambiente Tumoral
3.
Talanta ; 273: 125953, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521025

RESUMO

In this study, we report a new carbazole-malononitrile fluorescent probe CBC with an interesting aggregation-induced emission (AIE) characteristic. Probe CBC could rapidly and selectively detect hydrazine (N2H4) in ~100% aqueous media, and also exhibit an exceedingly low detection limit of 6.3 nM for sensitively detecting N2H4. The sensing mechanism of CBC towards N2H4 has been well demonstrated through the spectra of 1H NMR, HRMS and FTIR. Interestingly, probe CBC was applied to visualize and detect gaseous and aqueous N2H4 with sensitive color changes. Importantly, probe CBC was applied to effectively detect N2H4 in practical samples such as soil, human serum, human urine, plants, foods and beverages, as well as sensitively sense and image N2H4 in biological systems including living mungbean sprouts, Arabidopsis thaliana, and HeLa cells.


Assuntos
Arabidopsis , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HeLa , Imagem Molecular/métodos , Água/química , Carbazóis , Hidrazinas , Espectrometria de Fluorescência/métodos
4.
ACS Appl Bio Mater ; 7(3): 1416-1428, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391247

RESUMO

Diabetes vasculopathy is a significant complication of diabetes mellitus (DM), and early identification and timely intervention can effectively slow the progression. Accumulating studies have shown that diabetes causes vascular complications directly or indirectly through a variety of mechanisms. Direct imaging of the endothelial molecular changes not only identifies the early stage of diabetes vasculopathy but also sheds light on the precise treatment. Targeted ultrasound contrast agent (UCA)-based ultrasound molecular imaging (UMI) can noninvasively detect the expression status of molecular biomarkers overexpressed in the vasculature, thereby being a potential strategy for the diagnosis and treatment response evaluation of DM. Amounts of efforts have been focused on identification of the molecular targets expressed in the vasculature, manufacturing strategies of the targeted UCA, and the clinical translation for the diagnosis and evaluation of therapeutic efficacy in both micro- and macrovasculopathy in DM. This review summarizes the latest research progress on endothelium-targeted UCA and discusses their promising future and challenges in diabetes vasculopathy theranostics.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Humanos , Diabetes Mellitus/diagnóstico por imagem , Angiopatias Diabéticas/diagnóstico por imagem , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/terapia , Biomarcadores , Imagem Molecular/métodos
6.
J Mater Chem B ; 11(45): 10956-10966, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942841

RESUMO

Nanobubbles (NBs), as ultrasound contrast agents, possess the potential for clinical applications in targeted ultrasound molecular imaging due to their small diameters and the specific molecular markers attached. Previous research studies mainly focused on the tumor-specific recruitment capability or drug carriers based on subcutaneous tumor models. In clinical trials, orthotopic tumor models are considered more clinically relevant and better predictive models for assessing drug efficacy compared to standard subcutaneous models. Here, we first prepared uniform-sized NBs with a soft chitosan-lipid membrane containing perfluoropropane gas and then anti-VEGFR2 antibodies were incorporated into NB membranes in order to achieve targeting ability toward tumor angiogenesis. The results of physicochemical characterization (the average size of 260.9 ± 3.3 nm and a PDI of 0.168 ± 0.036, n = 3) indicated that the targeted nanobubbles (tNBsv) have a spherical morphology and a vacant core. In vitro experiments found that the contrast enhancement abilities of tNBsv are similar to those of commercial SonoVue. In in vivo experiments, the orthotopic model of the rabbit VX2 hepatic tumor was used to evaluate the targeted binding ability of tNBsv toward tumor angiogenesis. Ultrasound sonograms revealed that tNBsv achieved the peak intensity of ultrasound imaging enhancement in the region of peripheral vasculature of VX2 tumors over non-targeted NBs or SonoVue, and the imaging time was longer than that of the other two. Ex vivo fluorescence imaging and examination using a confocal laser scanning microscope further verified that tNBsv were capable of binding to tumor angiogenesis. These results from our studies suggested that tNBsv are useful to develop an ultrasound imaging probe to evaluate anti-angiogenic cancer therapy by monitoring tumor angiogenesis.


Assuntos
Neoplasias Hepáticas , Animais , Coelhos , Linhagem Celular Tumoral , Ultrassonografia/métodos , Imagem Óptica , Neovascularização Patológica , Imagem Molecular/métodos
7.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003400

RESUMO

Standard imaging cannot reliably predict the nature of renal tumors. Among malignant renal tumors, clear cell renal cell carcinoma (ccRCC) is the most common histological subtype, in which the vascular endothelial growth factor 2 (VEGFR-2) is highly expressed in the vascular endothelium. BR55, a contrast agent for ultrasound imaging, consists of gas-core lipid microbubbles that specifically target and bind to the extracellular portion of the VEGFR-2. The specific information provided by ultrasound molecular imaging (USMI) using BR55 was compared with the vascular tumor expression of the VEGFR-2 by immunohistochemical (IHC) staining in a preclinical model of ccRCC. Patients' ccRCCs were orthotopically grafted onto Nod-Scid-Gamma (NSG) mice to generate patient-derived xenografts (PdX). Mice were divided into four groups to receive either vehicle or axitinib an amount of 2, 7.5 or 15 mg/kg twice daily. Perfusion parameters and the BR55 ultrasound contrast signal on PdX renal tumors were analyzed at D0, D1, D3, D7 and D11, and compared with IHC staining for the VEGFR-2 and CD34. Significant Pearson correlation coefficients were observed between the area under the curve (AUC) and the CD34 (0.84, p < 10-4), and between the VEGFR-2-specific signal obtained by USMI and IHC (0.72, p < 10-4). USMI with BR55 could provide instant, quantitative information on tumor VEGFR-2 expression to characterize renal masses non-invasively.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Camundongos , Animais , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular , Xenoenxertos , Ultrassonografia/métodos , Imagem Molecular/métodos , Meios de Contraste , Neoplasias Renais/diagnóstico por imagem
9.
ACS Sens ; 8(12): 4473-4477, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37982675

RESUMO

Legumain has been identified as a target for diagnosis and treatment of associated cancers. Therefore, real-time imaging of legumain activity in vivo is helpful in diagnosing and evaluating therapeutic efficacy of associated cancers. Fluorescent/photoacoustic (FL/PA) dual-modal imaging developed rapidly because of its good sensitivity and spatial resolution. As far as we know, a tumor-targeted probe for FL/PA imaging of legumain activity in vivo has not been reported. Hence, we intended to develop a tumor-targeted hemicyanine (HCy) probe (HCy-AAN-Bio) for FL/PA imaging of legumain in vivo. The control probe HCy-AAN does not have tumor-targeting ability. Legumain can specifically cleave HCy-AAN-Bio or HCy-AAN with the generation of FL/PA signal while more HCy-AAN-Bio could be recognized by legumain than HCy-AAN with higher sensitivity in vitro. Due to the tumor-targeting ability, HCy-AAN-Bio could image 4T1 cells with an additional 1.3-fold FL enhancement and 1.9-fold PA enhancement than HCy-AAN. In addition, HCy-AAN-Bio could image legumain activity in vivo with an additional 1.5-fold FL enhancement and 1.9-fold PA enhancement than HCy-AAN. We expected that HCy-AAN-Bio will be a powerful tool for early diagnosis of associated cancer.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Neoplasias/diagnóstico por imagem , Corantes Fluorescentes , Imagem Molecular/métodos
10.
J Infect Dis ; 228(Suppl 4): S297-S301, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788503

RESUMO

While antimicrobials are among the most prescribed drugs, the use of some older antibiotics is not optimized for efficacy in terms of dosage, route of administration, and duration of therapy. Knowledge gaps exist regarding the heterogeneous microenvironments within different infected tissues consisting of varying bacterial loads, immune responses, and drug gradients. Positron-emission tomography-based imaging, where radiolabeled drugs are visualized within the living body, enables accurate, holistic, and real-time determination of pharmacokinetics to provide valuable, actionable data to optimize antibiotic use. Here we briefly review the concepts, history, and recent progress in the field.


Assuntos
Imagem Molecular , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Imagem Molecular/métodos , Preparações Farmacêuticas , Antibacterianos
11.
Proc Natl Acad Sci U S A ; 120(45): e2316387120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37878685
12.
J Labelled Comp Radiopharm ; 66(14): 444-451, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873934

RESUMO

Nanobodies (Nbs) hold significant potential in molecular imaging due to their unique characteristics. However, there are challenges to overcome when it comes to brain imaging. To address these obstacles, collaborative efforts and interdisciplinary research are needed. This article aims to raise awareness and encourage collaboration among researchers from various fields to find solutions for effective brain imaging using Nbs. By fostering cooperation and knowledge sharing, we can make progress in overcoming the existing limitations and pave the way for improved molecular imaging techniques in the future.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Imagem Molecular/métodos
13.
J Am Soc Mass Spectrom ; 34(11): 2481-2490, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779241

RESUMO

N-linked glycans are complex biomolecules vital to cellular functions that have been linked to a wide range of pathological conditions. Mass spectrometry imaging (MSI) has been used to study the localization of N-linked glycans in cells and tissues. However, their structural diversity presents a challenge for MSI techniques, which stimulates the development of new approaches. In this study, we demonstrate for the first time spatial mapping of N-linked glycans in biological tissues using nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI). Nano-DESI MSI is an ambient ionization technique that has been previously used for imaging of metabolites, lipids, and proteins in biological tissue samples without special sample pretreatment. N-linked glycans are released from glycoproteins using an established enzymatic digestion with peptide N-glycosidase F, and their spatial localization is examined using nano-DESI MSI. We demonstrate imaging of N-linked glycans in formalin-fixed paraffin-embedded human hepatocellular carcinoma and human prostate tissues in both positive and negative ionization modes. We examine the localization of 38 N-linked glycans consisting of high mannose, hybrid fucosylated, and sialyated glycans. We demonstrate that negative mode nano-DESI MSI is well-suited for imaging of underivatized sialylated N-linked glycans. On-tissue MS/MS of different adducts of N-linked glycans proves advantageous for elucidation of the glycan sequence. This study demonstrates the applicability of liquid extraction techniques for spatial mapping of N-linked glycans in biological samples, providing an additional tool for glycobiology research.


Assuntos
Neoplasias Hepáticas , Espectrometria de Massas por Ionização por Electrospray , Masculino , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem , Imagem Molecular/métodos , Polissacarídeos/análise
14.
Theranostics ; 13(14): 4858-4871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771776

RESUMO

The determination of tumor human epidermal growth factor receptor type 2 (HER2) status is of increasing importance with the recent approval of more efficacious HER2-targeted treatments. There is a lack of suitable methods for clinical in vivo HER2 expression assessment. Affibody molecules are small affinity proteins ideal for imaging detection of receptors, which are engineered using a small (molecular weight 6.5 kDa) nonimmunoglobulin scaffold. Labeling of Affibody molecules with positron emitters enabled the development of sensitive and specific agents for molecular imaging. The development of probes for SPECT would permit the use of Affibody-based imaging in regions where PET is not available. In this first-in-human study, we evaluated the safety, biodistribution, and dosimetry of the 99mTc-ZHER2:41071 Affibody molecule developed for SPECT/CT imaging of HER2 expression. Methods: Thirty-one patients with primary breast cancer were enrolled and divided into three cohorts (injected with 500, 1000, or 1500 µg ZHER2:41071) comprising at least five patients with high (positive) HER2 tumor expression (IHC score 3+ or 2+ and ISH positive) and five patients with low (IHC score 2+ or 1+ and ISH negative) or absent HER2 tumor expression. Patients were injected with 451 ± 71 MBq 99mTc-ZHER2:4107. Planar scintigraphy was performed after 2, 4, 6 and 24 h, and SPECT/CT imaging followed planar imaging 2, 4 and 6 h after injection. Results: Injections of 99mTc-ZHER2:41071 were well tolerated and not associated with adverse events. Normal organs with the highest accumulation were the kidney and liver. The effective dose was 0.019 ± 0.004 mSv/MBq. Injection of 1000 µg provided the best standard discrimination between HER2-positive and HER2-low or HER2-negative tumors 2 h after injection (SUVmax 16.9 ± 7.6 vs. 3.6 ± 1.4, p < 0.005). The 99mTc-ZHER2:41071 uptake in HER2-positive lymph node metastases (SUVmax 6.9 ± 2.4, n = 5) was significantly (p < 0.05) higher than that in HER2-low/negative lymph nodes (SUVmax 3.5 ± 1.2, n = 4). 99mTc-ZHER2:41071 visualized hepatic metastases in a patient with liver involvement. Conclusions: Injections of 99mTc-ZHER2:41071 appear safe and exhibit favorable dosimetry. The protein dose of 1000 µg provides the best discrimination between HER2-positive and HER2-low/negative expression of HER2 according to the definition used for current HER2-targeting drugs.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Imagem Molecular/métodos , Cintilografia , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos
16.
Anal Chem ; 95(34): 12913-12922, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37579019

RESUMO

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often assessed and visualized using various supervised and unsupervised statistical approaches. However, these approaches tend to fall short in identifying and concisely visualizing subtle, phenotype-relevant molecular changes. To address these shortcomings, we developed aggregated molecular phenotype (AMP) scores. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores, therefore, allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes. Due to the ensembled approach, AMP scores are able to overcome limitations associated with individual models, leading to high diagnostic accuracy and interpretability. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization MSI. Initial comparisons of cancerous human tissues to their normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.


Assuntos
Diagnóstico por Imagem , Neoplasias , Humanos , Diagnóstico por Imagem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias/diagnóstico por imagem , Metabolômica , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Imagem Molecular/métodos
17.
Analyst ; 148(15): 3491-3497, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37408465

RESUMO

Hydrazine (N2H4) is an important reagent in the field of fine chemical engineering. However, its accumulation in the environment and food chain could pose a great threat to food safety and human health. Therefore, designing a fluorescent probe with good cell penetration and high selectivity and sensitivity to detect N2H4 in actual samples and in vivo is a meaningful project. Herein, due to the nucleophilicity of hydrazine, we utilized naphthalimide as the fluorescence chromophore and pyrone as the recognition site to achieve the ratiometric detection of hydrazine by ring opening. In addition, we introduced the ester to improve the lipid solubility of the probe, which allowed the probe to better penetrate the cell membrane to realize the fluorescent imaging of probes in cells. Meanwhile, to our delight, the probe showed high selectivity and sensitivity to N2H4 in the test system, so we further applied the probe in water samples and food, in vitro and in vivo.


Assuntos
Corantes Fluorescentes , Hidrazinas , Humanos , Corantes Fluorescentes/toxicidade , Imagem Molecular/métodos , Espectrometria de Fluorescência/métodos
18.
Adv Biol (Weinh) ; 7(8): e2300091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37403275

RESUMO

Ovarian cancer is the fifth leading cause of cancer-related deaths in women and the most lethal gynecologic cancer. It is curable when discovered at an early stage, but usually remains asymptomatic until advanced stages. It is crucial to diagnose the disease before it metastasizes to distant organs for optimal patient management. Conventional transvaginal ultrasound imaging offers limited sensitivity and specificity in the ovarian cancer detection. With molecularly targeted ligands addressing targets, such as kinase insert domain receptor (KDR), attached to contrast microbubbles, ultrasound molecular imaging (USMI) can be used to detect, characterize and monitor ovarian cancer at a molecular level. In this article, the authors propose a standardized protocol is proposed for the accurate correlation between in- vivo transvaginal KDR-targeted USMI and ex vivo histology and immunohistochemistry in clinical translational studies. The detailed procedures of in vivo USMI and ex vivo immunohistochemistry are described for four molecular markers, CD31 and KDR with a focus on how to enable the accurate correlation between in vivo imaging findings and ex vivo expression of the molecular markers, even if not the entire tumor could can be imaged by USMI, which is not an uncommon scenario in clinical translational studies. This work aims to enhance the workflow and the accuracy of characterization of ovarian masses on transvaginal USMI using histology and immunohistochemistry as reference standards, which involves sonographers, radiologists, surgeons, and pathologists in a highly collaborative research effort of USMI in cancer.


Assuntos
Imagem Molecular , Neoplasias Ovarianas , Feminino , Humanos , Imuno-Histoquímica , Ultrassonografia/métodos , Imagem Molecular/métodos , Microbolhas , Neoplasias Ovarianas/diagnóstico por imagem
19.
Science ; 381(6653): 26-27, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410830

RESUMO

A new method expands chromatin to provide detailed images of transcription sites.


Assuntos
Cromatina , Microscopia de Fluorescência , Transcrição Gênica , Animais , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos
20.
Thorac Surg Clin ; 33(3): 227-232, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414478

RESUMO

Intraoperative molecular imaging innovations have been propelled by the development of fluorescent contrast agents that specifically target tumor tissues and advanced camera systems that can detect the specified fluorescence. The most promising agent to date is OTL38, a targeted and near-infrared agent that was recently approved by the Food and Drug Administration for intraoperative imaging for lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Corantes Fluorescentes , Imagem Molecular/métodos , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...